

DATE ISSUED: June 6, 2012

SUBJECT: Recent Attacks on State Websites

The MS-ISAC has been made aware of attacks on two state government websites. The group claiming

responsibility for these attacks is known as “The Unknowns”. The group was able to obtain and

subsequently publish information on the Internet from one of the sites that had been breached. The

information included database table names as well as the data contained within the tables such as

usernames, clear-text passwords, and user e-mail addresses.

The MS-ISAC has been in communication with the states affected by these breaches. One state reported

that the breach was likely the result of a SQL injection vulnerability.

These recent attacks on state websites and use of web applications as the primary attack vector has once

again underscored the continued prevalence of web application vulnerabilities as a viable means of

exploitation which enables the attackers to exfiltrate sensitive data from the target system.

The best way to protect your web applications from SQL injection is to ensure developers do not allow

client-supplied data to modify SQL statement syntax. All user-supplied data must be validated before it

is sent to a backend database. Examples of input attributes that should be checked are type, length, and

format.

There are typically two ways that a developer or administrator can prevent bad user input: either disallow

bad characters (black listing) or only allow required characters (white listing). The second option is

generally considered to be more secure because it is possible that filters may fail due to new attack

methods, different character encoding, and other attack variables. It is preferable to take the time to

determine exactly what input is needed and then to reject any incoming request that does not adhere to the

requirements.

There are a number of online resources to assist developers in performing input sanitization. Please refer

to the references below for links to these secure programming resources.

RECOMMENDATIONS:
All of the following actions should be taken:

· Validate and escape all user provided input before passing it to the backend database.

· Avoid using dynamic SQL whenever possible. Dynamic SQL refers to any situation in which

user-supplied input is concatenated with pre-defined SQL. Stored procedures or parameterized

SQL can be used as a safer alternative.

· Apply the principle of least-privilege to web applications that interact with your database. It is a

good idea to create an account for your web applications that has as few data access rights as

possible to limit the scope of damage in the event that a system is compromised.

· Turn off debugging information as it is often used to gather data for subsequent attacks.

· Review server applications for possible SQL injection vulnerabilities, and apply all necessary

code revisions and appropriate vendor patches after appropriate testing.

· Consider implementing Web Application Firewall (WAF) technology on the web servers.

· Consider encrypting the sensitive information in the database.

The following security alert was issued by the Information Security Division of the Mississippi Department of ITS and is

intended for State government entities. The information may or may not be applicable to the general public and

accordingly, the State does not warrant its use for any specific purposes.

REFERENCES:

Open Web Application Security Project (OWASP)
http://www.owasp.org/index.php/SQL_injection

Web Application Security Consortium (WASC)
http://www.webappsec.org/projects/threat/classes/sql_injection.shtml

Microsoft
http://blogs.iis.net/nazim/archive/2008/04/28/filtering-sql-injection-from-classic-asp.aspx

CodePlex
http://www.codeplex.com/IIS6SQLInjection

Information Week
http://www.informationweek.com/news/security/attacks/229900111

InfoSecurity
http://www.infosecurity-us.com/view/18265/another-comodo-partner-attacked-using-sql-injection/

http://www.owasp.org/index.php/SQL_injection
http://www.webappsec.org/projects/threat/classes/sql_injection.shtml
http://blogs.iis.net/nazim/archive/2008/04/28/filtering-sql-injection-from-classic-asp.aspx
http://www.codeplex.com/IIS6SQLInjection
http://www.informationweek.com/news/security/attacks/229900111
http://www.infosecurity-us.com/view/18265/another-comodo-partner-attacked-using-sql-injection/

